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Abstract. We study new abstract algebraic systems generalizing the system of real compact intervals
with addition and multiplication by scalar and the isomorphic embedding of these systems into
systems having group properties with respect to addition.

1. Introduction

We study the algebraic relations between: i) extended interval arithmetic over
normal (proper) intervals using inner (nonstandard) arithmetic operations [3], [4],
and, ii) extended interval arithmetic using improper intervals [1], [2], [10]. We
have shown in [5] that the first system is a “projection” of the second one on
the set of proper intervals. Here we continue our work from [6] aiming to show
that the second system is an isomorphic algebraic extension of the first one. We
study the essential algebraic properties of the system of intervals necessary for such
isomorphic embedding. To this end we deliberately exclude from consideration
the inclusion relation between intervals with the corresponding lattice operations
involved, concentrating on the properties of the operations addition, subtraction
and multiplication by scalar. A similar approach has been used in [9], where more
general systems (e.g. convex compact sets in IRn) are studied. An essential difference
between our work and [9] is that we are able to construct isomorphic embeddings,
whereas the embedding in [9] is not isomorphic. To achieve an isomorphism we first
extend the quasilinear space [8] by means of a complete second distributivity law,
which involves negation and inner addition [3], [5]. The modified structure thus
obtained, called extended quasilinear system, is isomorphically embedded in an
analogue of a linear system, called extended linear system, having group properties
with respect to addition. Particular systems of intervals which are extended groups
and extended linear systems have been considered in [1], [2] and other sources;
here we give an abstract algebraic theory of these systems.

In Section 2 we shortly repeat some of the basic concepts from [6], simplifying
the definition of extended semigroup (e.g. we do not require here uniqueness
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of the negation). In Section 3 we state in a modified form the basic embedding
theorem from [6] and give a complete proof (due to space limit the proof of
this theorem has been omitted in [6]). We hope that the inductive exposition of
the proof will contribute to a better understanding of the role of the binary and
unary operations “addition,” “negation,” “opposite,” and “dual.” In Section 4 we
consider a semigroup with multiplication by scalar. Using some properties naturally
extracted from interval arithmetic, we introduce a so-called extended quasilinear
system, which generalizes the interval structure (I(IR), +, ⋅) [3]–[5]. We show that
the extended quasilinear system can be isomorphically embedded into an analogue
of a linear system, called “extended linear system.”

2. Extended Semigroup and Its Isomorphic Embedding

Extended semigroup. An Abelian (commutative) semigroup is a system (S, +),
such that (A + B) + C = A + (B + C) and A + B = B + A for A, B, C ∈ S. Our starting
point is a class of Abelian semigroups (S, +), satisfying the assumption (T): for
every ordered pair (A, B), A, B ∈ S, at least one of the following two statements
hold true: i) A + X = B is uniquely solvable, symbolically A ≤ω B, ii) B + Y = A
is uniquely solvable, symbolically B ≤ω A [6]. If both statements i)–ii) hold true
simultaneously, we write A =ω B. If A ≤ω B and A 6=ω B, we write A <ω B.
Assumption (T) implies cancellation; indeed A + D = B + D = E and (T) imply
that A and B are unique solutions of same equations, hence A = B. Therefore the
semigroup (S, +) can be embedded in an Abelian group [9]. Recall that an Abelian
group is a commutative semigroup (G, +) with: 1) a unique null element 0, such
that a + 0 = a, for all a ∈ G, and 2) a unique additive inverse (opposite) operator
“opp”: G−→G, such that a + opp(a) = 0, for all a ∈ G. In an Abelian group (G, +)
for every a, b ∈ G: 1) the equation a + x = b has a unique solution x = b + opp(a);
2) a + x = b + x =⇒ a = b (cancellation law). We say that a semigroup S is proper,
if S is not a group itself.

We impose certain additional assumptions on (S, +), abstracted from interval
arithmetic, naturally arriving to the following:

DEFINITION 2.1. A system (S, S0, +, neg) is called an extended semigroup (with
subgroup S0), iff: 1) (S, +) is a proper commutative semigroup satisfying assumption
(T); 2) S0 is a proper subgroup of S (S0 ⊂ S, S0 6= S) such that: i) S0 6= {0}, where
0 is the null element of S0; ii) S0 is maximal with respect to “⊂”, that is for any
other subgroup S′0 of S we have S′0 ⊂ S0; 3) there is an operator neg: S−→ S, called
negation, such that: i) neg(A) = 0⇐⇒ A = 0, A ∈ S; ii) neg(neg(A)) = A, A ∈ S;
iii) neg(A + B) = neg(A) + neg(B), A, B ∈ S; iv) neg(P) + P = 0, P ∈ S0.

Since S0 is a group, there is an additive inverse (opposite) operator in S0,
denoted by “−”, so that (−P) + P = 0 for P ∈ S0. Condition iv) can be also written:
neg(P) = −P, P ∈ S0. Properties i)–iv) mean that “neg” is an automorphism in S
which isomorphically extends “opposite” from S0 into S. Note that by definition an
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extended semigroup and a group both have a binary, a unary and a nullary operation
(addition, negation, resp. opposite, and null element), whereas a (usual) semigroup
is supposed to have only a binary operation. We shall rename the operator “neg”
in S by “−” as traditionally done in interval arithmetic. The class of all extended
semigroups is denoted byXS. We introduce in (S, S0, +,−) ∈XS three new binary
operations by means of the negation operator as follows. Subtraction is defined by
A− B = A + (−B), A, B ∈ S. Inner addition is defined by:

A +− B =

{
X|(−A)+X = B, A ≤ω B,
Y|(−B)+Y =A, B ≤ω A,

(2.1)

where X|(−A)+X =B denotes the solution of (−A)+X = B. Inner subtraction is defined
by A −− B = A +− (−B) = {−X|B= A+X , if A ≤ω B; Y|A=B+Y , if B ≤ω A}. We
have A +− B = B +− A, −(A +− B) = (−A) +− (−B), A +− (−A) = A −− A = 0,
(A +− B) +− C = A +− (B +− C) iff A ≤ω B and C ≤ω B (see [6]; many properties
for intervals [3]–[5] are valid for the abstract case as well).

Factor group with negation. Consider the classical embedding of S into the
set G = S2 / ∼ consisting of all pairs (A, B), A, B ∈ S, factorized by the equivalence
relation ∼: (A, B) ∼ (U, V)⇐⇒A + V = B + U, A, B, U, V ∈ S. Addition in G defined
by (A, B) + (C, D) ≡ (A + C, B + D) turns G into a group; the opposite element in G
is opp(A, B) = (B, A).

Assumption (T) subdivides G into three disjoint subsets: G+ = {(A, B) |
B <ω A}, G− = {(A, B) | A <ω B}, G0 = {(A, B) | A =ω B}, so that G =
G+ ∪ G0 ∪ G−. The semigroup (S, +) is isomorphically embedded in (G, +) under
ϕ : S −→ G+, 0 = G+ ∪ G0 with ϕ(A) ≡ (A, 0), A ∈ S. For P ∈ S0 we have
ϕ(P) = (P, 0) = (0,−P), since P + (−P) = 0 (S0 is a group!). The image of S under
ϕ is ϕ(S) = G+, 0; moreover, we have ϕ(S0) = G0 and ϕ(S+) = G+, where S+ = S\S0

and G0 is a subgroup of G. We may use a unique representation of the factorized
pairs, by writing the elements of G+, 0 in the form (A, 0) with A ∈ S, and those of
G− in the form (0, B) with B ∈ S+. The elements of G0 are called degenerate, those
of G+ are proper and those of G− are improper. We shall say that two elements of
G are of same type if they both belong either to G+, or to G−. In the factor group
G we introduce neg: G −→ G by neg(A, B) ≡ (−A,−B). It is easy to see that “neg”
satisfies the properties: N1) neg(a) = 0⇐⇒ a = 0, a ∈ G; N2) neg(neg(a)) = a,
a ∈ G; N3) neg(a + b) = neg(a) + neg(b), a, b ∈ G; N4) neg(p) + p = 0 for p ∈ G0;
N5) neg(a) + a 6= 0 for a ∈ G \G0.

Properties N1)–N4) show that “neg” isomorphically extends negation from S
into G. Note that both “neg” and “opp” satisfy properties N1)–N4) in G, that is,
N1–N4) remain true if we formally replace “opp” for “neg”. Both “opp” and “neg”
coincide on G0. However, “neg” and “opp” are distinct on G \ G0; indeed, the
elements a and neg(a) for a ∈ G \ G0 are of same type, whereas a and opp(a) are
not. Thus “opp” and “neg” are two distinct isomorphic extensions of the operator
“opp” from G0 into G. Instead of N5) “opp” satisfies opp(a) + a = 0, a ∈ G. The
symmetric elements neg(a) + a form a subgroup of G [7].
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The operator dual: G −→ G defined by dual(A, B) ≡ neg(opp(A, B)) = neg(B, A)
= (−B,−A) satisfies: D1) dual(a) = 0⇐⇒ a = 0, a ∈ G; D2) dual(dual(a)) = a,
a ∈ G; D3) dual(a + b) = dual(a) + dual(b), a, b ∈ G; D4) dual(p) = p, p ∈ G0;
D5) dual(a) + a ∈ G0 for a ∈ G \ G0.

Thus “dual” isomorphically extends the “identity” from S into G. Both “dual” and
“identity” in G satisfy properties D1)–D4); they coincide on G0 but for a ∈ G \G0,
the elements a and dual(a) are not of same type. Note that “identity” does not satisfy
D5.

In a factor group G generated by S ∈XS the operator “neg” will be denoted by
“−” as we do in S. The factor group will be denoted fully by (G, G0, +,−) to remind
the existence of a subgroup G0 and a negation in G. A factor group (G, G0, +,−)
generated by an extended semigroup (S, S0, +,−) will be called an extended factor
group.

A pair of the form (A; α), A ∈ S ∈XS, α ∈ {+,−}, is called a directed element
(of S) [6]. The direction α of the directed element a = (A; α) is denoted α = τ(a);
the projection of a on S is pro(a) = A. Directed pairs play a role similar to the role
of the pairs (N; α), N ∈ IN, α ∈ {+,−}, for the definition of integers (IN is the set
of natural numbers).

In what follows we find an isomorphism between the factorized and directed
pairs.

3. The Isomorphism between Factorized and Directed Pairs

We define D as the set of all pairs of the form (A; α), A ∈ S, α ∈ {+,−}, factorized
by the equivalence relation: (A; α) ∼ (B; β), iff A = B ∈ S0. In other words we shall
not distinguish between the pairs (P; +) and (P;−) for P ∈ S0. We shall briefly
call D the directed set over S. Define three disjoint sets of directed elements by:
D+ = {(A; +) | A ∈ S+}, D− = {(A;−) | A ∈ S+}, D0 = {(P; α) | P ∈ S0}. Denote
also D+, 0 = {(A; +) | A ∈ S}. We have D = D+, 0 ∪ D− = D+ ∪ D− ∪ D0.

PROPOSITION 3.1. Let (S, S0, +,−) ∈ XS generate the extended factor group
G = (G, G0, +,−) and D be the directed set over S. The mapping ψ : G−→D, defined
by ψ(A, 0) = (A; +), A ∈ S; ψ(0, B) = (−B;−), B ∈ S+, is isomorphic. Addition in
D under ψ is: (A; α) + (B; β) ≡ (A +αβ B; τ), with τ = {α, if B ≤ω A; β, if A <ω B}.

Proof. To construct an isomorphism ψ between G and D, we first define a
bijection ψ : G+, 0 −→ D+, 0 by setting for (A, 0) ∈ G+, 0:

ψ(A, 0) = (A; +) ∈ D+, 0, A ∈ S. (3.1)

Define addition in D+, 0 by (A; +) + (B; +) = (A + B; +), then ψ is an isomorphism
between the semigroups (G+, 0, +) and (D+, 0, +). Let us extend the mapping ψ so
that it becomes a isomorphic mapping from G onto D. This in particular means
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that i) ψ(G−) = D−, that is the image of G− is D−, and, ii) ψ is an isomorphism
between G− and D−. From i) we have ψ(0, B) ∈ D−, for B ∈ S+, that is

ψ(0, B) =
(
ƒ(B);−

)
∈ D−, B ∈ S+, (3.2)

with some mapping ƒ : S+ −→ S+ and from ii) we have (ƒ(A + B);−) = (ƒ(A);−) +
(ƒ(B);−). If the addition rule in D− is assumed to be in the form (A;−) + (B;−) =
(A + B;−), we obtain ƒ(A) + ƒ(B) = ƒ(A + B). Let us assume that the mapping ƒ can
be determined on S = S+ ∪ S0 (not only on S+!) in such a way that ψ , now given
by

ψ(0, B) =
(
ƒ(B);−

)
∈ D−, 0, B ∈ S = S+ ∪ S0, (3.3)

is an isomorphism between D−, 0 = D− ∪ D0 and G−, 0 = G− ∪ G0. Since ψ is
already defined on D0 by means of (3.1) we must put (3.3) into agreement with the
definition of ƒ on S0. For B = P ∈ S0 equality (3.1) produces ψ(P, 0) = (P; +) ∈ D0

or, equivalently,

ψ(0,−P) = (P;−) ∈ D0, P ∈ S0, (3.4)

using that for P ∈ S0, (P, 0) = (0,−P) ∈ G0, and (P; +) = (P;−). Equation (3.4)
can be also written in the form

ψ(0, P) = (−P;−) ∈ D0, P ∈ S0. (3.5)

Comparing (3.5) and (3.3) gives that ƒ(P) = −P, for P ∈ S0. From (3.3) using that
ψ is constructed to be an isomorphism we have to ensure ƒ(A) + ƒ(B) = ƒ(A + B),
A, B ∈ S. Obviously, if ƒ is a negation on S, then both requirements: i) ƒ(P) = −P
on S0, and, ii) ƒ(A + B) = ƒ(A) + ƒ(B) for A, B ∈ S, which are necessary for ψ
to be isomorphic, will be satisfied. Under the assumption ƒ = neg formula (3.2)
becomes

ψ(0, B) = (−B;−) ∈ D−, B ∈ S+. (3.6)

Note that the expressions (3.1) and ψ(0, B) = (−B;−), B ∈ S, produce same results
for A, B ∈ S0, hence (3.6) is valid for B ∈ S as well. The equalities (3.1) and (3.6)
define a bijection between G and D. It can be directly checked that ψ preserves the
operation “+” if we accept the following definition of addition on D:

(A; α) + (B; β) ≡ (A +αβ B; τ), (3.7)

τ ≡
{

α, if B ≤ω A,
β, if A <ω B. (3.8)

The mapping ψ is an isomorphism between G and D, which implies that (D, +) is
an extended group. 2

Remark. The product αβ of two binary variables in (3.7) means: ++ = −− = +,
+− = −+ = −; also ++ = + and “+−” is the inner addition defined by (2.1). For
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example, for α = β = −, (3.7) reads: (A;−) + (B;−) = (A + B;−). The binary
variable τ in (3.8) means the direction of the bigger element A, B ∈ S (with respect
to ≤ω).

COROLLARY 3.1. The automorphisms in D under ψ are neg(A; α) = (−A; α),
opp(A; α) = (−A;−α) and dual(A; α) = (A;−α).

Proof. Using that ψ : G −→ D is isomorphic, express π ∈ {opp, dual, neg} in D
under ψ , by means of π(A; α) = ψ(π(ψ−1(A; α))). 2

According to Proposition 3.1 G and D are isomorphic, therefore the system
(D, D0, +,−), which corresponds to the extended factor group (G, G0, +,−), is also
a group; we shall call it the extended directed group (generated by S ∈XS).

The class of all extended groups (without regard to being factor or directed) will
be denoted by XG; we shall consider G and D as two copies of one and the same
algebraic system from the class XG. We shall further use notation G only to mean
the extended factor group and notation D to mean either the factor or the directed
group. Note that for the algebraic completion of the extended semigroup up to an
extended group we substantially make use of the negation operator in the original
extended semigroup. A typical formula is: opp(A; α) = (−A;−α), showing that the
opposite elements in D, cannot be expressed without negation. On the other side the
automorphism dual(A, B) = (−B,−A) cannot be expressed in G without negation,
too.

The relation between “neg”, “opp”, and “dual” in D ∈ XG obtains the form:
−a = opp(dual(a)) = dual(opp(a)), a ∈ D. For “dual” we shall use the brief
notation: dual(a) = a−. For uniformity we set a+ = a, a ∈ D; then we can use
the convenient notation aλ , where λ ∈ {+,−} is a binary variable. Note that the
equations aλ = b and a = bλ are equivalent for a ∈ D. The relation between the
three automorphic mappings leads to a useful symbolic notation for the additive
inverse operation: opp(a) = −(a−) = (−a)− = −a−, a ∈ D. In computations we
may refrain from using “neg(a)”, “dual(a)”, and “opp(a)” in favour of −a, a− and
−a−, resp. For a ∈ D we have a + a ≡ a− a + a + a−.

4. Isomorphic Embedding of a Quasilinear System

We introduce multiplication by scalars in the systems S, D and G. Let (S, S0, +)
satisfy assumptions 1) and 2) of Definition 2.1 (there is no need to assume 3), since
negation will be obtained “free” from multiplication by −1). Define multiplication
by scalar “⋅” (the dot may be omitted) in the cartesian product of IR and S (instead
of IR we can take C| or some other field) as follows:

DEFINITION 4.1. An operation defined for every pair (p, A), with p ∈ IR, A ∈ S,
denoted by p ⋅ A ≡ pA, is called multiplication by scalar, if for A, B ∈ S, p, q ∈ IR
the following properties i)–v) are satisfied:

i) associativity of multiplication by scalar: p(qA) = (pq)A;
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ii) first distributive law: p(A + B) = pA + pB;

iii) second distributivity law:

(p + q)A = pA +σ(p)σ(q) qA, (4.1)

where σ(p) = {+, if p ≥ 0; −, if p < 0} and “+−” is defined by (2.1)
assuming that the symbol −A in (2.1) is defined by −A ≡ (−1)A;

iv) 1 ⋅ A = A; and

v) (−1) ⋅ P + P = 0, for P ∈ S0.

It is easily seen that p(A+−B) = pA+−pB. It can also be verified that−A ≡ (−1)A
is negation in the sense of Definition 2.1, hence (S, S0, +,−) ∈ XS. Note that
setting p = 1, q = −1 in (4.1), implies A +− (−A) = A −− A = 0, as expected.
The extended semigroup (S, S0, +,−) endowed with multiplication by scalar will
be denoted S(IR) = (S, S0, +, IR, ⋅) and called extended quasilinear system (over IR).
We shall denote by XQ the class of all extended quasilinear systems. According
to Proposition 3.1 an extended semigroup can be isomorphically embedded in a
extended group. We shall next extend the multiplication by scalar from S(IR) ∈XQ
into D, resp. G, in order to embed isomorphically any extended quasilinear system
into a system having group properties with respect to addition.

PROPOSITION 4.1. Let S(IR) = (S, S0, +, IR, ⋅) ∈ XQ and let D ∈ XG be an
extended group generated by S. Assume A, B ∈ S, p, q ∈ IR, a, b ∈ D (and, in
particular, a, b ∈ G). Then:

i) the setting p(A, B) ≡ (pA, pB) isomorphically extends the multiplication by
scalar in G; multiplication by “−1” is negation in G;

ii) p(A; α) ≡ (pA; α) isomorphically extends the multiplication by scalar from S
to D; multiplication by “−1” is negation in D;

iii) p(qa) = (pq)a, p(a + b) = pa + pb, 1a = a and (−1)a + a = 0 for a ∈ D0;

iv) the following second distributivity law holds true:

(p + q)aσ(p+q) = paσ(p) + qaσ(q), a ∈ D, p, q ∈ IR, (4.2)

which can be also written in the form: (p + q)a = paλ + qaµ , with λ =
σ(p)σ(p + q), µ = σ(q)σ(p + q);

v) (−1)a + a = 0 for a ∈ D0.

PROPOSITION 4.2. For p, q ∈ IR, λ ∈ {+,−}, d ∈ D, s ≡ p2−q2 6= 0, the equation
px + qxλ = d has a unique solution x = s−1(pd − qd−λ )σ(s).

If λ = σ(p / q) using (4.2) we have: x = (p + q)−1dσ(1+ q / p).
We shall denote an extended factor group endowed with multiplication by scalar

by (G, G0, +, IR, ⋅) omitting the “−” as special case of multiplication by scalar. Sim-
ilarly we denote the respective extended directed group by (D, D0, +, IR, ⋅); we have
(G, G0, +, IR, ⋅) ∼= (D, D0, +, IR, ⋅) under the isomorphism ψ from Proposition 3.1.
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The algebraic system (D, D0, +, IR, ⋅) is called extended linear system (over IR);
the class of all extended linear systems is denoted by XL. Using this terminol-
ogy we can state Proposition 4.1 as: every extended quasilinear system can be
isomorphically embedded in an extended linear system.

EXAMPLE. Let us illustrate the above results to the set I(IR) of all compact
intervals on IR. Denote A = [a−, a+] ∈ I(IR). Let “+” be the interval addition:
A + B = {x + y | x ∈ A, y ∈ B} and “−” be the operator negation: −A =
{−x | x ∈ A}; end-pointwise: A + B ≡ [a−, a+] + [b−, b+] = [a− + b−, a+ + b+],
resp., −[a−, a+] = [−a+,−a−]. The interval arithmetic system (I(IR), +,−) is an
extended semigroup; it satisfies assumption (T), with A ≤ω B meaning a+ − a− ≤
b+−b−. The inner addition is [a−, a+] +− [b−, b+] = {[a− + b+, a+ + b−], if B ≤ω
A; [a+ + b−, a− + b+], if A <ω B}. The multiplication by scalar in I(IR), defined
by pA ≡ {px | x ∈ A} = {[pa−, pa+], if p ≥ 0; [pa+, pa−], if p < 0}, satisfies the
second distributivity law in the form (4.1), hence (I(IR), +, ⋅) is an extended quasi-
linear system. The latter possesses a rich algebraic structure involving inner oper-
ations [3]–[6]. In the case of I(IR) our embedding theorems state: 1) every extend-
ed semigroup (I(IR), +,−) is isomorphically embedded into an extended group
(D, +,−) ∈XG, where D is the set of extended (also called “directed” or “general-
ized”) intervals of the form [a−, a+], a−, a+ ∈ IR (no restriction a− ≤ a+ assumed);
2) every extended quasilinear system (I(IR), +, ⋅) is isomorphically embedded into
an extended linear system of directed intervals which is a group with respect to “+”
and possesses a second distributive law of the form (4.2). The operators “dual” and
“opp” in the extended (group/linear) interval system are: dual [a−, a+] = [a+, a−],
opp[a−, a+] = [−a−,−a+] (cf. [1], [2]). We can also work with extended intervals
in directed form: [A; α], A ∈ I(IR), α ∈ {+,−} [5].

5. Conclusion

Our work reveals the role of the extended algebraic systems (semigroups, groups,
quasilinear and linear systems) in the algebraic study of interval sets, in particular,
it points out the role of the inner operations, e.g. (2.1), and the complete second
distributivity law (4.1); for intervals the latter has been first reporteded in [3].
From our work it becomes obvious that computations in an extended linear system
(D, +, ⋅) are similar to those in a familiar linear system up to the following two
main differences: i) in D we have four automorphisms (“neg”, “opp”, “dual”, and
“identity”) against two (“opp” and “identity”) in an usual linear system, and ii) a
slightly modified second linear law involving the operator “dual” takes place in
D.

Future work can be done in the following directions. First, extended quasilinear
and extended linear systems of n-dimensional elements can be introduced in the
form (Sn, +, ⋅), resp. (Dn, +, ⋅), wherein “+” and “⋅” are defined componentwise.
Second, using multiplicative notations we can derive multiplicative analogues to
the additive semigroup and group systems (as noted in [6]). The link between
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addition and multiplication by scalars in XQ, resp. XL, can be extended towards
a link between additive and multiplicative operations. To this end one can use an
abstraction of the corresponding distributive relations in (I(IR), +, ×), resp. (D, +, ×)
(cf. [5], [6]) to study abstract systems which are close to rings and algebras [7].
Third, we may consider the extension of a metric, norm, and inclusion from S to
D; such extensions have been already constructed for spaces of factorized pairs [2],
[9] and can be easily adopted for spaces of directed elements. Thus the analysis
of interval functions developed in [4] can be extended in the spirit of this work
for functions which values are directed elements, and, in particular, are directed
intervals. Fourth, this work outlines a new approach to the exposition of the theory
of complex intervals, and many results can be transferred for compact convex sets
as well. In particular, the complete second distributivity law (4.1) holds true for
compact convex sets.
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